Publications by authors named "L Ghesquiere-Dierickx"

The highly conformal carbon-ion radiotherapy is associated with an increased sensitivity of the dose distributions to internal changes in the patient during the treatment course. Hence, monitoring methodologies capable of detecting such changes are of vital importance. We established experimental setup conditions to address the sensitivity of a monitoring approach based on secondary-fragment tracking for detecting clinically motivated air cavity dimensions in a homogeneous head-sized PMMA phantom in 40 mm depth.

View Article and Find Full Text PDF

Background: In-vivo monitoring methods of carbon ion radiotherapy (CIRT) includes explorations of nuclear reaction products generated by carbon-ion beams interacting with patient tissues. Our research group focuses on in-vivo monitoring of CIRT using silicon pixel detectors. Currently, we are conducting a prospective clinical trial as part of the In-Vivo Monitoring project (InViMo) at the Heidelberg Ion Beam Therapy Center (HIT) in Germany.

View Article and Find Full Text PDF

Background: Accuracy and precision assessment in radiomic features is important for the determination of their potential to characterize cancer lesions. In this regard, simulation of different imaging conditions using specialized phantoms is increasingly being investigated. In this study, the design and evaluation of a modular multimodality imaging phantom to simulate heterogeneous uptake and enhancement patterns for radiomics quantification in hybrid imaging is presented.

View Article and Find Full Text PDF

Purpose: Noninvasive methods to monitor carbon-ion beams in patients are desired to fully exploit the advantages of carbon-ion radiotherapy. Prompt secondary ions produced in nuclear fragmentations of carbon ions are of particular interest for monitoring purposes as they can escape the patient and thus be detected and tracked to measure the radiation field in the irradiated object. This study aims to evaluate the performance of secondary-ion tracking to detect, visualize, and localize an internal air cavity used to mimic inter-fractional changes in the patient anatomy at different depths along the beam axis.

View Article and Find Full Text PDF

The dose conformity of carbon-ion beam radiotherapy, which allows the reduction of the dose deposition in healthy tissue and the escalation of the dose to the tumor, is associated with a high sensitivity to anatomical changes during and between treatment irradiations. Thus, the monitoring of inter-fractional anatomical changes is crucial to ensure the dose conformity, to potentially reduce the size of the safety margins around the tumor and ultimately to reduce the irradiation of healthy tissue. To do so, monitoring methods of carbon-ion radiotherapy in depth using secondary-ion tracking are being investigated.

View Article and Find Full Text PDF