The prediction of pathological changes on single cell behaviour is a challenging task for deep learning models. Indeed, in self-supervised learning methods, no prior labels are used for the training and all of the information for event predictions are extracted from the data themselves. We present here a novel self-supervised learning model for the detection of anomalies in a given cell population, StArDusTS.
View Article and Find Full Text PDFWe have discovered a new 4 h ultradian rhythm that occurs during the interphase of the cell cycle in a wide range of individual mammalian cells, including both primary and transformed cells. The rhythm was detected by holographic lens-free microscopy that follows the histories of the dry mass of thousands of single live cells simultaneously, each at a resolution of five minutes. It was vital that the rhythm was observed in inherently heterogeneous cell populations, thus eliminating synchronization and labeling bias.
View Article and Find Full Text PDFHere, we demonstrate that lens-free video microscopy enables us to simultaneously capture the kinetics of thousands of cells directly inside the incubator and that it is possible to monitor and quantify single cells along several cell cycles. We describe the full protocol used to monitor and quantify a HeLa cell culture for 2.7 days.
View Article and Find Full Text PDFThey present results for lens-free microscopy for the imaging of dense cell culture. With this aim, they use a multiwavelength LED illumination with well separated wavelengths, together with the implementation of an appropriate holographic reconstruction algorithm. This allows for a fast and efficient reconstruction of the phase image of densely packed cells (up to 700 cells/mm ) over a large field of view of 29.
View Article and Find Full Text PDFWe present a device enabling impedance measurements that probe the motility and mitosis of a single adherent cell in a controlled way. The micrometre-sized electrodes are designed for adhesion of an isolated cell and enhanced sensitivity to cell motion. The electrode surface is switched electro-chemically to favour cell adhesion, and single cells are attracted to the electrode using positive dielectrophoresis.
View Article and Find Full Text PDF