Nat Cardiovasc Res
July 2024
Psychological processes have a crucial role in the recovery from acute myocardial infarction (AMI), yet the underlying mechanisms of these effects remain elusive. Here we demonstrate the impact of the reward system, a brain network associated with motivation and positive expectations, on the clinical outcomes of AMI in mice. Chemogenetic activation of dopaminergic neurons in the reward system improved the remodeling processes and vascularization after AMI, leading to enhanced cardiac performance compared to controls.
View Article and Find Full Text PDFBackground: Dilated cardiomyopathy (DCM) caused by Lamin A/C gene (LMNA) mutation is complicated with atrioventricular conduction disturbances, malignant ventricular arrhythmias and progressive severe heart failure.
Objective: We hypothesized that early cardiac resynchronization therapy (CRT) implantation in LMNA mutation carriers with an established indication for pacemaker or implantable cardioverter defibrillator (ICD), may preserve ejection fraction, and delay disease progression to end stage heart failure.
Methods: We compared the primary outcomes: time to heart transplantation, death due to end stage heart failure or ventricular tachycardia (VT) ablation and secondary outcomes: change in left ventricular ejection fraction (EF) and ventricular arrhythmia burden between LMNA DCM patients in the early CRT and non-CRT groups.
Cardiomyocyte proliferation and dedifferentiation have fueled the field of regenerative cardiology in recent years, whereas the reverse process of redifferentiation remains largely unexplored. Redifferentiation is characterized by the restoration of function lost during dedifferentiation. Previously, we showed that ERBB2-mediated heart regeneration has these two distinct phases: transient dedifferentiation and redifferentiation.
View Article and Find Full Text PDF