Publications by authors named "L Garribba"

Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN.

View Article and Find Full Text PDF
Article Synopsis
  • - Profilin 1, a protein encoded by PFN1, has a potential tumor-suppressive function in certain cancers, but its exact role in tumor development remains unclear.
  • - Research shows that inactivating Profilin 1 leads to severe mitotic issues like anaphase bridges and improper chromosome alignment, which can contribute to genomic instability in cancer cells.
  • - The study reveals that Profilin 1 helps in proper cell division by supplying actin filaments during cytokinesis, and its absence is linked to structural anomalies in cells and tumor progression.
View Article and Find Full Text PDF

Proper partitioning of replicated sister chromatids at each mitosis is crucial for maintaining cell homeostasis. Errors in this process lead to aneuploidy, a condition in which daughter cells harbor genome imbalances. Importantly, aneuploid cells often experience DNA damage, which in turn could drive genome instability.

View Article and Find Full Text PDF

Folate deficiency is associated with a broad range of human disorders, including anemia, fetal neural tube defects, age-associated dementia and several types of cancer. It is well established that a subgroup of rare fragile sites (RFSs) containing expanded CGG trinucleotide repeat (TNR) sequences display instability when cells are deprived of folate. However, given that folate sensitive RFSs exist in a very small percentage of the population, they are unlikely to be the cause of the widespread health problems associated with folate deficiency.

View Article and Find Full Text PDF

Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within the locus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity.

View Article and Find Full Text PDF