Severe acute respiratory coronavirus-2 (SARS-CoV-2) emerged in 2019 as a new virus and caused worldwide outbreaks, quickly turning into a pandemic disease called coronavirus disease-19 (COVID-19). All the existing methodologies were used for developing vaccines for this virus. But sporadic infections of this virus and the emergence of new strains to date suggest the incomplete protection offered by the developed vaccines and the need for new research.
View Article and Find Full Text PDFPurpose: Precision oncology clinical trials often struggle to accrue, partly because it is difficult to find potentially eligible patients at moments when they need new treatment. We piloted deployment of artificial intelligence tools to identify such patients at a large academic cancer center.
Patients And Methods: Neural networks that process radiology reports to identify patients likely to start new systemic therapy were applied prospectively for patients with solid tumors that had undergone next-generation sequencing at our center.
The genome of the dengue virus codes for a single polypeptide that yields three structural and seven non-structural (NS) proteins upon post-translational modifications. Among them, NS protein-3 (NS3) possesses protease activity, involved in the processing of the self-polypeptide and in the cleavage of host proteins. Identification and analysis of such host proteins as substrates of this protease facilitate the development of specific drugs.
View Article and Find Full Text PDFIt is difficult to track virus-coded proteins simultaneously if they localize to multiple subcellular organelles. Here, we present a protocol for the simultaneous detection of dual subcellular localized dengue virus protease by co-transfection. We describe steps for cell seeding, co-transfection with mitochondria targeted red fluorescent protein, cell fixation, permeabilization, and staining of transfected cells with Hoechst stain.
View Article and Find Full Text PDFThrombocytopenia is one of the symptoms of many virus infections which is the "hallmark" in the case of dengue virus. In this study, we show the differential localization of existing two forms of dengue virus protease, i.e.
View Article and Find Full Text PDF