Gastric and pancreatic cancers are malignancies of high unmet clinical need. Expression of CLDN18.2 in these cancers, coupled with it's absence from most normal tissues, provides a potential therapeutic window against this target.
View Article and Find Full Text PDFNature-based solutions are popular techniques for managing stormwater. Most of them allow porous media as their main layer. The description of the Soil Water Retention Curve (SWRC) as the Unsaturated Hydraulic Conductivity Curve (UHCC) is often required to run the hydrological simulations with the physically based models.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert).
View Article and Find Full Text PDFPurpose: Claudin-6 (CLDN6) is expressed at elevated levels in multiple human cancers including ovarian and endometrial malignancies, with little or no detectable expression in normal adult tissue. This expression profile makes CLDN6 an ideal target for development of a potential therapeutic antibody-drug conjugate (ADC). This study describes the generation and preclinical characterization of CLDN6-23-ADC, an ADC consisting of a humanized anti-CLDN6 monoclonal antibody coupled to monomethyl auristatin E (MMAE) via a cleavable linker.
View Article and Find Full Text PDFpHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells.
View Article and Find Full Text PDF