The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23F*, V31K*, and R44K*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of , along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and (strain IP 5832), and Gram-negative bacteria such as (ATCC 28753 and 2943 strains) and (MG1655 and K12 strains).
View Article and Find Full Text PDFCombining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp).
View Article and Find Full Text PDFThe need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from .
View Article and Find Full Text PDFUnder certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer's, Parkinson's and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures.
View Article and Find Full Text PDFThe development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide".
View Article and Find Full Text PDF