Animal models that accurately reflect COVID-19 are vital for understanding mechanisms of disease and advancing development of improved vaccines and therapeutics. Pigs are increasingly recognized as valuable models for human disease due to their genetic, anatomical, physiological, and immunological similarities to humans, and they present a more ethically viable alternative to non-human primates. However, pigs are not susceptible to SARS-CoV-2 infection which limits their utility as a model.
View Article and Find Full Text PDFBreed- and prion protein (PRNP) genotype-related disease phenotype variability has been observed in sheep infected with the 87V murine scrapie strain. Therefore, the stability of this strain was tested by inoculating sheep-derived 87V brain material back into VM mice. As some sheep-adapted 87V disease phenotypes were reminiscent of CH1641 scrapie, transgenic mice (Tg338) expressing ovine prion protein (PrP) were inoculated with the same sheep-derived 87V sources and with CH1641.
View Article and Find Full Text PDFThe gram-negative bacterium Pasteurella multocida causes pneumonic and systemic pasteurellosis in bovids for which vaccines are either unavailable or inadequate. The work assessed whether an intranasal P. multocida challenge in mice might provide a model of infection for future vaccine development work.
View Article and Find Full Text PDFThe ability of prions to infect some species and not others is determined by the transmission barrier. This unexplained phenomenon has led to the belief that certain species were not susceptible to transmissible spongiform encephalopathies (TSEs) and therefore represented negligible risk to human health if consumed. Using the protein misfolding cyclic amplification (PMCA) technique, we were able to overcome the species barrier in rabbits, which have been classified as TSE resistant for four decades.
View Article and Find Full Text PDF