Gravity is a ubiquitous external force that must be considered when producing coordinated movements. Drop-landing is a popular task to study how humans cope with gravity, because anticipatory muscle activations can be released before the estimated ground contact. But the consequences of these anticipatory muscle activations have only been interpreted in terms of stiffening the lower-limbs in preparation for ground contact, without considering potential anticipatory kinematic consequences.
View Article and Find Full Text PDFPurpose: Our purpose was to quantify stresses in the bone surrounding stemless implants in various configurations.
Methods: A detailed finite element model of the glenohumeral joint was used to simulate abduction kinematics before and after arthroplasty and to measure bone stresses around the implants. Two digital patients were simulated: one healthy and one with supraspinatus muscle impairment (deficiency).
Purpose: Stress shielding in short-stem arthroplasty can cause critical metaphyseal bone loss. If the size and shape of the humeral shaft are important factors, it is unknown whether the shape of the polyethylene component in reverse shoulder arthroplasty (RSA) affects bone stress around or within the stem. We explored the impact of polyethylene shape on humeral and scapular stress distribution using a finite element model.
View Article and Find Full Text PDFInertial Measurement Units (IMUs) have been proposed as an ecological alternative to optoelectronic systems for obtaining human body joint kinematics. Tremendous work has been done to reduce differences between kinematics obtained with IMUs and optoelectronic systems, by improving sensor-to-segment calibration, fusion algorithms, and by using Multibody Kinematics Optimization (MKO). However, these improvements seem to reach a barrier, particularly on transverse and frontal planes.
View Article and Find Full Text PDFBackground: The objective of this study was to identify and qualify, by means of a three-dimensional kinematic analysis, the postures and movements of obstetricians during a simulated forceps birth, and then to study the association of the obstetricians' experience with the technique adopted.
Method: Fifty-seven volunteer obstetricians, 20 from the Limoges and 37 from the Poitiers University hospitals, were included in this multi-centric study. They were classified into 3 groups: beginners, intermediates, and experts, beginners having performed fewer than 10 forceps deliveries in real conditions, intermediates between 10 and 100, and experts more than 100.