Background: Alveolar soft part sarcoma (ASPS) is a rare soft-tissue sarcoma with a poor prognosis and no established therapy. Recently, encouraging responses to immune checkpoint inhibitors have been reported.
Methods: We conducted an investigator-initiated, multicenter, single-group, phase 2 study of the anti-programmed death ligand 1 (PD-L1) agent atezolizumab in adult and pediatric patients with advanced ASPS.
Cell-based immunotherapies have had remarkable success in the clinic, specifically in the treatment of hematologic malignancies. However, these strategies have had limited efficacy in patients with solid tumors. To better understand the challenges involved, the National Cancer Institute (NCI) convened an initial workshop with immuno-oncology thought leaders in December 2018 and a follow-up workshop in December 2020.
View Article and Find Full Text PDFAims: The histone deacetylase inhibitor belinostat has activity in various cancers. Because belinostat is metabolized by the liver, reduced hepatic clearance could lead to excessive drug accumulation and increased toxicity. Safety data in patients with liver dysfunction are needed for this drug to reach its full potential in the clinic.
View Article and Find Full Text PDF: The intracellular effects and overall efficacies of anticancer therapies can vary significantly by tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer cell types, we measured gene-expression changes across the NCI-60 cell line panel after exposure to 15 anticancer agents. The results were integrated into a combined database and set of interactive analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), that allows exploration of gene-expression modulation by molecular pathway, drug target, and association with drug sensitivity.
View Article and Find Full Text PDFObjective: To introduce a novel preclinical animal model of psoriatic arthritis (PsA) in R26Stat3C CD4Cre mice, and to investigate the role of Th17 cytokines in the disease pathogenesis.
Methods: We characterized a novel murine model of Th17-driven cutaneous and synovio-entheseal disease directed by T cell-specific expression of a hyperactive Stat3 allele. By crossing R26Stat3C CD4Cre mice onto an interleukin-22 (IL-22)-knockout background or treating the mice with a neutralizing antibody against IL-17, we interrogated how these Th17 cytokines could contribute to the pathogenesis of PsA.