Publications by authors named "L Fiume"

Most cancer cells use aerobic glycolysis to fuel their growth and many efforts are made to selectively block this metabolic pathway in cancer cells by inhibiting lactate dehydrogenase A (LDHA). However, LDHA is a moonlighting protein which exerts functions also in the nucleus as a factor associated to transcriptional complexes. Here we found that two small molecules which inhibit the enzymatic activity of LDHA hinder the transcription of histone 2B gene independently from the block of aerobic glycolysis.

View Article and Find Full Text PDF

Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition.

View Article and Find Full Text PDF

Up-regulation of glycolysis, a well recognized hallmark of cancer cells, was also found to be predictive of poor chemotherapy response. This observation suggested the attempt of sensitizing cancer cells to conventional chemotherapeutic agents by inhibiting glucose metabolism. Lactate dehydrogenase (LDH) inhibition can be a way to hinder glycolysis of cancer cells without affecting the metabolism of normal tissues, which usually does not require this enzymatic activity.

View Article and Find Full Text PDF

Introduction: This review deals with the use of serum albumin (SA) as a carrier for the selective delivery of drugs to liver cells.

Areas Covered: The synthesis and properties of the SA conjugates prepared to enhance the performance of the drugs used in the treatment of viral hepatitis, hepatocellular carcinoma (HCC), liver micrometastases and hepatic fibrosis are reported.

Expert Opinion: Studies in humans and laboratory animals demonstrated the capacity of SA conjugates to accomplish a liver targeting of the drugs, but at the same time underscored their limits and drawbacks, which can explain why to date these complexes did not reach a practical application.

View Article and Find Full Text PDF