Publications by authors named "L Firlej"

Context: Single-wall carbon nanotubes (SWCNT) dispersed in water with the help of sodium dodecyl sulfate (SDS) surfactants exhibit a temperature dependent near infrared (NIR) exciton spectrum. Due to their biocompatibility and NIR spectrum falling within the transparent window for biological tissue, SWCNTs hold potential for sensing temperature inside cells. Here, we seek to elucidate the mechanism responsible for this temperature dependence, focusing on changes in the water coverage of the SWCNT as the surfactant structure changes with temperature.

View Article and Find Full Text PDF

With the specter of accelerating climate change, securing access to potable water has become a critical global challenge. Atmospheric water harvesting (AWH) through metal-organic frameworks (MOFs) emerges as one of the promising solutions. The standard numerical methods applied for rapid and efficient screening for optimal sorbents face significant limitations in the case of water adsorption (slow convergence and inability to overcome high energy barriers).

View Article and Find Full Text PDF

Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs).

View Article and Find Full Text PDF

The need for efficient probing, sensing, and control of the bioactivity of biomolecules (e.g., albumins) has led to the engineering of new fluorescent albumins' markers fulfilling very specific chemical, physical, and biological requirements.

View Article and Find Full Text PDF

The hase behavior of confined fluids adsorbed in nanopores differs significantly from their bulk counterparts and depends on the chemical and structural properties of the confining structures. In general, phase transitions in nanoconfined fluids are reflected in stepwise adsorption isotherms with a pronounced hysteresis. Here, we show experimental evidence and an interpretation of the reversible stepwise adsorption isotherm which is observed when methane is adsorbed in the rigid, crystalline metal-organic framework IRMOF-1 (MOF-5).

View Article and Find Full Text PDF