Publications by authors named "L Ferraris-Bouchez"

We present a novel Active Magnetic Shield (AMS), designed and implemented for the n2EDM experiment at the Paul Scherrer Institute. The experiment will perform a high-sensitivity search for the electric dipole moment of the neutron. Magnetic-field stability and control is of key importance for n2EDM.

View Article and Find Full Text PDF

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it is hard to inject a false signal.

View Article and Find Full Text PDF

We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is of the experimental method and setup is given, the sensitivity requirements for the apparatus are derived, and its technical design is described.

View Article and Find Full Text PDF

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^{199}Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes.

View Article and Find Full Text PDF