Publications by authors named "L Faour"

Artificial molecular machines are able to produce and exploit precise nanoscale actuations in response to chemical or physical triggers. Recent scientific efforts have been devoted to the integration, orientation, and interfacing of large assemblies of molecular machines in order to harness their collective actuations at larger length scale and up to the generation of macroscopic motions. Making use of such "hierarchical mechanics" represents a fundamentally new approach for the conception of stimuli-responsive materials.

View Article and Find Full Text PDF

The synthesis of a redox-active helical foldamer and its immobilization onto a gold electrode are described. These large molecular architectures are grafted in a reproducible manner and provide foldamer-based self-assembled monolayers displaying recognition properties.

View Article and Find Full Text PDF

Tetrathiafulvalene redox units were grafted at both extremities of an oligopyridine-dicarboxamide foldamer through a straightforward copper-catalyzed azide-alkyne cycloaddition. The present work demonstrates that the hybridization equilibrium of foldamers can be tuned through redox stimulations.

View Article and Find Full Text PDF

An electroactive and luminescent foldamer based on an oligopyridine biscarboxamide skeleton was synthesized and characterised. Its conformation in the solid state proved to be strongly affected by the peripheral pyrene units. The latter also endow the target derivative with recognition abilities toward electron-withdrawing molecules, which allow tuning of the spectroscopic properties of the foldamer.

View Article and Find Full Text PDF

A study of the structural parameters which govern the supramolecular organization of an organogelator built from the Disperse Red moiety is proposed. In particular, the key balance between intermolecular H-bonding and/or π-π interactions is addressed by comparing the effect of a secondary amide vs. an ester linker within the molecular structure.

View Article and Find Full Text PDF