Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data.
View Article and Find Full Text PDFOwing to climate change, numerous regions around the world are expected to experience heightened occurrences of extreme events, including heat waves and intense precipitation. This will disproportionately impact the well-being of urban populations. The implementation of green roofs is actively considered as a viable climate adaptation strategy enhancing the resilience of cities.
View Article and Find Full Text PDFNon-melanoma skin cancers (NMSC), including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and Merkel cell carcinoma (MCC), are increasingly common and present significant healthcare challenges. Neutrophil extracellular traps (NETs), chromatin fibers expulsed by neutrophil granulocytes, can promote immunotherapy resistance via an impairment of CD8 T cell-mediated cytotoxicity. Here, to identify a potential therapeutic target, we investigate the expulsion of NETs and their relation to CD8 T cell infiltration in NMSC.
View Article and Find Full Text PDFFree amino acids (FAAs) constitute the largest component (∼40 %) of the so-called natural moisturizing factors of the skin. Their level declines in dry skin conditions and one strategy to overcome this problem may involve the topical delivery of FAAs through appropriate strategy. The objective of the present study was therefore to identify alternative skin models and study the corneocyte-water partition coefficients (K) and permeation coefficient (K) of 18 FAAs.
View Article and Find Full Text PDF