BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.
View Article and Find Full Text PDFThe SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites.
View Article and Find Full Text PDFMotivation: Environmental monitoring of pathogens provides an accurate and timely source of information for public health authorities and policymakers. In the last 2 years, wastewater sequencing proved to be an effective way of detection and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants circulating in population. Wastewater sequencing produces substantial amounts of geographical and genomic data.
View Article and Find Full Text PDFSARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to an international public health emergency in 3 months after its emergence in Wuhan, China. Typically for an RNA virus, random mutations occur constantly leading to new lineages, incidental with a higher transmissibility. The highly infective alpha lineage, firstly discovered in the UK, led to elevated mortality and morbidity rates as a consequence of Covid-19, worldwide.
View Article and Find Full Text PDF