Publications by authors named "L E Komarova"

Objective: Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed in vivo, making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically compatible 3D tissue cultures to assess the effects of ionizing radiation.

View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) has recently attracted increasing attention. Unlike other hydrogels, it allows for the adjustment of the mechanical properties using such factors as degree of functionalization, concentration, and photocrosslinking parameters. In this study, GelMA with a high degree of substitution (82.

View Article and Find Full Text PDF

In order to obtain new fundamental knowledge, patterns of manifestation of synergy have been studied after simultaneous combined action of hyperthermia (47.5-60 degrees C) with anti-tumor agents (cyclophosphamide, cisplatin) on the survival of yeast cells. To calculate the efficiency of the synergistic interaction, the dependence of cell survival on the duration of exposure at separate and simultaneous action of chemical agents and hyperthermia was used.

View Article and Find Full Text PDF

The expediency of the stromal cells application, obtained from adipose tissue, was determined in a frame of preclinical investigations conduction, concerning experimental works on laboratory rats, in whom the extremity ischemia was simulated. Histologic and immunohistochemical changes were studied in muscular tissue after transplantation of multipotent stromal cells of own adipose tissue in patients, suffering ischemia of the lower extremity. Reduction of severity of the myofibrills ischemic damage, rapid activation of the muscles regenerative power, accurate stimulation of the angiogenesis processes in 3 mo after transplantation of the cells were demonstrated.

View Article and Find Full Text PDF

Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth.

View Article and Find Full Text PDF