One avenue to better understand brain evolution is to map molecular patterns of evolutionary changes in neuronal cell types across entire nervous systems of distantly related species. Generating whole-animal single-cell transcriptomes of three nematode species from the genus, we observed a remarkable stability of neuronal cell type identities over more than 45 million years of evolution. Conserved patterns of combinatorial expression of homeodomain transcription factors are among the best classifiers of homologous neuron classes.
View Article and Find Full Text PDFProcedural learning and automatization have widely been studied in behavioral psychology and typically involves a rapid improvement, followed by a plateau in performance throughout repeated training. More recently, brain imaging studies have implicated frontal-striatal brain circuits in skill learning. However, it is largely unknown whether frontal-striatal activation during skill learning and behavioral changes follow a similar learning curve pattern.
View Article and Find Full Text PDFLaser-induced crystallization is a novel alternative to classical methods for crystallizing organic molecules but requires a judicious choice of experimental parameters for the onset of crystallization to be predictable. This study investigated the impact of the laser repetition rate on the time delay from the start of the pulsed laser illumination to the initiation of crystallization, the so-called induction time. A supersaturated urea solution was irradiated with near-infrared (λ = 1030 nm) laser pulses of pulse duration τ = 5 ps at a pulse energy of approximately = 340 μJ while varying the repetition rate from 10 to 20,000 Hz.
View Article and Find Full Text PDFEarly-life stress increases sensitivity to subsequent stress, which has been observed among humans, other animals, at the level of cellular activity, and at the level of gene expression. However, the molecular mechanisms underlying such long-lasting sensitivity are poorly understood. We tested the hypothesis that persistent changes in transcription and transcriptional potential were maintained at the level of the epigenome, through changes in chromatin.
View Article and Find Full Text PDFBackground: Understanding the biological processes that underlie individual differences in emotion regulation and stress responsivity is a key challenge for translational neuroscience. The gene FKBP5 is a core regulator in molecular stress signaling that is implicated in the development of psychiatric disorders. However, it remains unclear how FKBP5 DNA methylation in peripheral blood is related to individual differences in measures of neural structure and function and their relevance to daily-life stress responsivity.
View Article and Find Full Text PDF