Int J Radiat Oncol Biol Phys
June 2008
Purpose: Patients with malignant gliomas have a poor prognosis. To explore a novel and more effective approach for the treatment of patients with malignant gliomas, we designed a strategy that combines caspase-8 (CSP8) gene therapy and radiation treatment (RT). In addition, the specificity of the combined therapy was investigated to decrease the unpleasant effects experienced by the surrounding normal tissue.
View Article and Find Full Text PDFPatients with malignant gliomas have a very poor prognosis. To explore a novel and more effective approach for the treatment of malignant gliomas, a strategy that combined tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy and radiation treatment (RT) was designed in this study. Plasmid pE4-GFP was constructed by including the radioinducible early growth response gene 1 (Egr-1) promoter, and it yielded the best response with fractionated RT.
View Article and Find Full Text PDFPurpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888.
Experimental Design: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation.
Caspase-3 plays a critical role as an executioner of apoptosis. The aim of this study is to evaluate the potential of the combination of caspase-3 gene therapy and radiation treatment. We prepared a plasmid (pCI-CSP3) that contained the human caspase-3 gene and the cytomegalovirus promoter.
View Article and Find Full Text PDFDNA damage that is not repaired with high fidelity can lead to chromosomal aberrations or mitotic cell death. To date, it is unclear what factors control the ultimate fate of a cell receiving low levels of DNA damage (i.e.
View Article and Find Full Text PDF