Background: Due to the increasing availability of high-quality genome sequences, pan-genomes are gradually replacing single consensus reference genomes in many bioinformatics pipelines to better capture genetic diversity. Traditional bioinformatics tools using the FM-index face memory limitations with such large genome collections. Recent advancements in run-length compressed indices like Gagie et al.
View Article and Find Full Text PDFThis study introduces a pioneering approach to automate the creation of search schemes for lossless approximate pattern matching. Search schemes are combinatorial structures that define a series of searches over a partitioned pattern. Each search specifies the processing order of these parts and the cumulative lower and upper bounds on the number of errors in each part of the pattern.
View Article and Find Full Text PDFMONI (Rossi et al., 2022) is a BWT-based compressed index for computing the matching statistics and maximal exact matches (MEMs) of a pattern (usually a DNA read) with respect to a highly repetitive text (usually a database of genomes) using two operations: LF-steps and longest common extension (LCE) queries on a grammar-compressed representation of the text. In practice, most of the operations are constant-time LF-steps but most of the time is spent evaluating LCE queries.
View Article and Find Full Text PDFDue to the increasing availability of high-quality genome sequences, pan-genomes are gradually replacing single consensus reference genomes in many bioinformatics pipelines to better capture genetic diversity. Traditional bioinformatics tools using the FM-index face memory limitations with such large genome collections. Recent advancements in run-length compressed indices like Gagie et al.
View Article and Find Full Text PDF