Objective: The objective of this work was to propose an alternative solution to NMR signal transmission by replacing the coaxial cables of the receiver radiofrequency (RF) coil in the context of MRI so as to improve safety. Starting from the analysis of previous studies and reports on the topic, the difficulty of supplying power wirelessly to an RF coil was identified. To avoid this difficult task, the development of a passive analog optical link was studied.
View Article and Find Full Text PDFWhen high-energy and high-power lasers interact with matter, a significant part of the incoming laser energy is transformed into transient electromagnetic pulses (EMPs) in the range of radiofrequencies and microwaves. These fields can reach high intensities and can potentially represent a significative danger for the electronic devices placed near the interaction point. Thus, the comprehension of the origin of these electromagnetic fields and of their distribution is of primary importance for the safe operation of high-power and high-energy laser facilities, but also for the possible use of these high fields in several promising applications.
View Article and Find Full Text PDFNon-intrusive, wide bandwidth and spatial resolution are terms often heard in electric field sensing. Despite of the fact that conventional electromagnetic field probes (EMF) can exhibit notable functional performances, they fail in terms of perturbation of the E-field due to their loaded metallic structure. In addition, even though electro-optical technology offers an alternative, it requires large interaction lenghts which severely limit the sensing performances in terms of bandwidth and spatial resolution.
View Article and Find Full Text PDFDuring magnetic resonance imaging (MRI) examinations, the average specific absorption rate (SAR) of the whole body is calculated as an index of global energy deposition in biological tissue without taking into account the presence of metallic implants or conductive materials. However, this global SAR calculation is not sufficient to ensure patient safety and a local SAR measurement should be carried out. Several measurement techniques have already been used to evaluate the local SAR, in particular electric field (E-field) probes, but the accuracy of the measurements and the resolutions (spatial and temporal) depend strongly on the measurement method/probe.
View Article and Find Full Text PDFWe describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma.
View Article and Find Full Text PDF