Publications by authors named "L Duret"

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

The dynamics of the genetic diversity of pathogens, including the emergence of lineages with increased fitness, is a foundational concept of disease ecology with key public-health implications. However, the identification of such lineages and estimation of associated fitness remain challenging, and is rarely done outside densely sampled systems. Here we present phylowave, a scalable approach that summarizes changes in population composition in phylogenetic trees, enabling the automatic detection of lineages based on shared fitness and evolutionary relationships.

View Article and Find Full Text PDF

Although senescent cells can be eliminated by the immune system, they tend to accumulate with age in various tissues. Here we show that senescent cells can evade immune clearance by natural killer (NK) cells by upregulating the expression of the disialylated ganglioside GD3 at their surface. The increased level of GD3 expression on senescent cells that naturally occurs upon aging in liver, lung, kidney or bones leads to a strong suppression of NK-cell-mediated immunosurveillance.

View Article and Find Full Text PDF
Article Synopsis
  • * The exact relationship between circadian disruption and PD is not fully understood, raising questions about whether circadian issues are a cause, a consequence, or just a related symptom of the disease.
  • * This review analyzes clinical evidence and animal studies to explore the interactions between PD progression and circadian disruption, indicating that they may influence each other in complex ways.
View Article and Find Full Text PDF

We present GTDrift, a comprehensive data resource that enables explorations of genomic and transcriptomic characteristics alongside proxies of the intensity of genetic drift in individual species. This resource encompasses data for 1506 eukaryotic species, including 1413 animals and 93 green plants, and is organized in three components. The first two components contain approximations of the effective population size, which serve as indicators of the extent of random genetic drift within each species.

View Article and Find Full Text PDF