This paper describes the synthesis and characterization of liquid crystals based on loop-shaped cationic copper(I) complexes of a multidentate ligand. Their synthesis involves the one-pot reaction of an alkyloxy-decorated pyridine-aldehyde unit with a diamine (2,2'-(ethylenedioxy)bis(ethylamine)) spacer to form in situ a pyridine-imine quadridentate-N-donor ligand, L, which is able to chelate a copper(I) center associated with various noncoordinating anions. All of these compounds were characterized by NMR, IR, and electronic absorption spectroscopy, and more particularly by X-ray diffraction and mass spectroscopy, enabling unambiguous assignment of the [ML] mononuclear nature of the cationic components.
View Article and Find Full Text PDFDespite the robust evidence that congruent background music in the physical store environment positively affects consumer reactions, less is known about its effects in an online context. The present study aims (1) to examine whether congruency via multiple elicited crossmodal correspondences between background music and the online store environment (e.g.
View Article and Find Full Text PDFThe synthesis and characterisation of novel chelate nitrogen ligands with phasmidic tails (pyridine-triazole ligand 1b; 2,2'-bipyrimidine ligands 2b and 3b) as well as their titanium(IV) coordination complexes are reported. The analogous ligands 1a, 2a and 3a with methoxy substituents instead of the tails were also synthesized, together with titanium complexes that could be crystallographically characterised. A good agreement is noticed between analytical data of the complexes in solution (NMR) and in the solid state (X-ray diffraction).
View Article and Find Full Text PDFSpin-crossover (SCO) active transition metal complexes are a class of switchable molecular materials. Such complexes undergo hysteretic high-spin (HS) to low-spin (LS) transition, and vice versa, rendering them suitable for the development of molecule-based switching and memory elements. Therefore, the search for SCO complexes undergoing abrupt and hysteretic SCO, that is, bistable SCO, is actively carried out by the molecular magnetism community.
View Article and Find Full Text PDF