Micro positron emission tomography (PET) and micro computed tomography (CT) imaging are powerful, ideal research tools for following the progression of cardiovascular calcification. Due to their non-invasive nature, small research animals can be imaged at multiple time points. The challenge lies in the accurate quantification of cardiovascular calcification.
View Article and Find Full Text PDFPurpose Of Review: Inhibitors of sodium-glucose cotransporter-2 (SGLT2) lower renal glucose reabsorption and, thus, are used to treat patients with type 2 diabetes mellitus. Clinical trials coincidentally showed that SGLT2 inhibitors also benefitted patients with heart failure. This review explores the impact of SGLT2 inhibitors on other aspects of cardiovascular disease and skeletal health.
View Article and Find Full Text PDFCardiovascular disease and osteoporosis, major causes of morbidity and mortality, are associated with hyperlipidemia. Recent studies show that empagliflozin (EMPA), an inhibitor of sodium-glucose cotransporter-2 (SGLT2), improves cardiovascular health. In preclinical animal studies, EMPA mitigates vascular calcification in the males but its effects in the females are not known.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2024
Peripheral serotonin levels are associated with cardiovascular disease risk. We previously found that serum serotonin levels are higher in hyperlipidemic mice than wild-type mice. Evidence also suggests that serotonin regulates biomineralization, in that serotonin treatment augments TNF-a-induced matrix calcification of aortic valve interstitial cells and that a selective inhibitor of peripheral serotonin, LP533401, rescues bone loss induced by ovariectomy in mice.
View Article and Find Full Text PDF