Publications by authors named "L Deepak Khemlani"

Studies were undertaken to examine hepatocyte CD14 expression during endotoxemia. Our results show that lipopolysaccharide (LPS) treatment in vivo caused a marked upregulation in CD14 mRNA and protein levels in rat hepatocytes. Detectable increases in mRNA were seen as early as 1.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS)-binding protein (LBP) has been reported to be an acute-phase protein. LBP binds to LPS with a high affinity; LPS-LBP complexes then interact with the receptor CD14, resulting in increased expression of LPS-inducible genes. Hepatocytes represent a major source of LBP, but little is known about the regulation of rodent hepatocyte LBP synthesis.

View Article and Find Full Text PDF

Endogenous regulatory mechanisms exist in mammals that enable a rapid response to lipopolysaccharide (LPS, endotoxin) stemming from gram-negative bacterial infections. Serum proteins and cell surface receptors exist that bind LPS, and this interaction may either aid in nonpathogenic removal of LPS from the body or potentiate the effects of LPS. We have used a photoreactive, thiol-cleavable, radiolabeled derivative of E.

View Article and Find Full Text PDF

Increased procoagulant activity of vascular endothelial cells may be an important component in the pathogenesis of intravascular coagulation associated with gram-negative bacterial diseases. Two bovine endothelial cell (BEC) lines isolated from pulmonary arteries (ENS-2 and ENT-18) were used in this study to investigate procoagulant signal transduction pathways of endotoxin (lipopolysaccharide, LPS)--stimulated BECs. The endothelial cell line ENS-2 was sensitive to LPS as demonstrated by tissue factor (TF) expression, but in contrast, the ENT-18 endothelial cell line was unusually resistant to the effects of LPS.

View Article and Find Full Text PDF

We have compared the effect of bacterial lipopolysaccharide (LPS) in combination with normal adult bovine serum (NBS), fetal bovine serum (FBS), or a bovine serum fraction on tissue factor expression and tumor necrosis factor alpha (TNF-alpha) secretion by bovine alveolar macrophages. At a concentration of 1 ng/ml, bacterial LPS alone failed to induce measurable tissue factor expression by the macrophages, but the presence of FBS, NBS, or a fraction of normal pooled bovine serum isolated by ion-exchange chromatography (fraction 2) markedly potentiated the effect of LPS. A protein concentration of 64 micrograms/ml NBS, 192 micrograms/ml FBS, and only 640 ng/ml fraction 2 was required to induce maximal tissue factor expression on the macrophages in combination with 1 ng/ml LPS.

View Article and Find Full Text PDF