Publications by authors named "L De Marzi"

Article Synopsis
  • Spatial fractionation of proton fields in cancer treatment improves sparing of healthy tissue while ensuring tumor control.
  • This study demonstrated the use of the National Physical Laboratory's Primary Standard Proton Calorimeter to measure absorbed dose in a proton beam with a specific configuration.
  • Results indicated that uncertainty in absorbed dose measurements was mainly due to positioning accuracy, suggesting that reference dosimetry should focus on measuring Dose-Area Product or using SOBP for more reliable outcomes in spatially fractionated fields.
View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death worldwide. Liver transplantation (LT) is the best therapy for most patients with non-metastatic HCC. In recent years, the management of patients with HCC has considerably changed, thanks to the improvement of molecular biology knowledge and the introduction of immunotherapy.

View Article and Find Full Text PDF

Background: Ultra-high dose rate (UHDR/FLASH) irradiations, along with particle minibeam therapy (PMBT) are both emerging as promising alternatives to current radiotherapy techniques thanks to their improved healthy tissue sparing and similar tumor control.

Purpose: Monte Carlo (MC) modeling of a commercial machine delivering 5-7 MeV electrons at UHDR. This model was used afterward to compare measurements against simulations for an experimental setup combining both FLASH and PMBT modalities.

View Article and Find Full Text PDF

Background: While electron beams of up to 20 MeV are commonly used in radiotherapy, the use of very-high-energy electrons (VHEEs) in the range of 100-200 MeV is now becoming a realistic option thanks to the recent advancements in accelerator technology. Indeed, VHEE offers several clinically attractive features and can be delivered using various conformation methods (including scanning, collimation, and focussing) at ultra-high dose rates. To date, there is a lack of research tools for fast simulation of treatment plans using VHEE beams.

View Article and Find Full Text PDF
Article Synopsis
  • Proton Minibeam Radiation Therapy (pMBRT) is a unique technique that modulates radiation dose delivery to potentially enhance anti-tumor immune responses while impacting treatment outcomes through specific dosimetric parameters like peak and valley doses.* -
  • The study used an orthotopic rat model of glioblastoma to explore how different pMBRT configurations influence survival and immune response, finding that higher dose heterogeneity and maintaining a minimum valley dose improved overall outcomes.* -
  • Results indicated that optimizing both peak doses and valley doses led to better tumor eradication and less immunosuppression, contrasting with traditional proton therapy that usually creates uniform dose distributions.*
View Article and Find Full Text PDF