Publications by authors named "L Dankmeyer"

Protein engineering increasingly relies on machine learning models to computationally pre-screen promising novel candidates. Although machine learning approaches have proven effective, their performance on prospective screening data leaves room for improvement; prediction accuracy can vary greatly from one protein variant to the next. So far, it is unclear what characterizes variants that are associated with large prediction error.

View Article and Find Full Text PDF

Secreted mixtures of cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C.

View Article and Find Full Text PDF

The growth of the fission yeast Schizosaccharomyces pombe on glucose and glycerol was monitored on-line in shake flasks and microtiter plates. The Edinburgh Minimal Medium 2 was improved by doubling its concentrations, improving its buffer and increasing its sulphur and iron concentrations additionally. By growing S.

View Article and Find Full Text PDF

Trichoderma reesei is a filamentous fungus widely used as an efficient protein producer and known to secrete large quantities of biomass degrading enzymes. Much work has been done aimed at improving the secretion efficiency of this fungus. It is generally accepted that the major bottlenecks in secretion are protein folding and ornamentation steps in this pathway.

View Article and Find Full Text PDF

The filamentous fungus Trichoderma reesei produces and secretes profuse quantities of enzymes that act synergistically to degrade cellulase and related biomass components. We partially sequenced over 5100 random T. reesei cDNA clones.

View Article and Find Full Text PDF