Animal movements are typically influenced by multiple environmental factors simultaneously, and individuals vary in their response to this environmental heterogeneity. Therefore, understanding how environmental aspects, including biotic, abiotic, and anthropogenic factors, influence the movements of wild animals is an important focus of wildlife research and conservation. We apply Exponential Random Graph Models (ERGMs) to analyze movement networks of a bull shark population in a network of acoustic receivers and identify the effects of environmental, social, or other types of covariates on their movements.
View Article and Find Full Text PDFEcosystems and biodiversity across the world are being altered by human activities. Habitat modification and degradation are among the most important drivers of biodiversity loss. These modifications can have an impact on species behavior, which can, in turn, impact their mortality.
View Article and Find Full Text PDFManaging populations of wild harvested species requires the ability to regularly provide accurate abundance assessments. For most marine species, changes in abundance can only be monitored indirectly, using methods reliant on harvest-based indices, with significant inherent limitations surrounding the estimation and standardization of harvest effort. Tropical tunas are some of the most exploited marine species in the world and are among several species in critical need of alternative methods for estimating abundance.
View Article and Find Full Text PDFExcess harvesting power can threaten the long-term sustainability of fisheries. Indicators of excess harvesting capacity must include input-output-based estimates of economic production efficiency. The increasing use of drifting Fish-Aggregating-Devices (DFADs) has boosted fishing productivity in high-seas tuna fisheries, perhaps beyond the biological capacity of the stocks, and is an object of global debate.
View Article and Find Full Text PDFKnowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species.
View Article and Find Full Text PDF