Background: Human IgE (hIgE) mAbs against major mite allergen Der p 2 developed using human hybridoma technology were used for IgE epitope mapping and analysis of epitopes associated with the hIgE repertoire.
Objective: We sought to elucidate the new hIgE mAb 4C8 epitope on Der p 2 and compare it to the hIgE mAb 2F10 epitope in the context of the allergenic structure of Der p 2.
Methods: X-ray crystallography was used to determine the epitope of anti-Der p 2 hIgE mAb 4C8.
Immunoglobulin E (IgE) antibody is a critical effector molecule for adaptive allergen-induced immune responses, which affect up to 40% of the population worldwide. Allergens are usually innocuous molecules but induce IgE antibody production in allergic subjects. Allergen cross-linking of IgE bound to its high affinity receptor (FcεRI) on mast cells and basophils triggers release of histamine and other mediators that cause allergic symptoms.
View Article and Find Full Text PDFDer p 2 is one of the most important allergens from the house dust mite Identification of human IgE Ab binding epitopes can be used for rational design of allergens with reduced IgE reactivity for therapy. Antigenic analysis of Der p 2 was performed by site-directed mutagenesis based on the x-ray crystal structure of the allergen in complex with a Fab from the murine IgG mAb 7A1 that binds an epitope overlapping with human IgE binding sites. Conformational changes upon Ab binding were confirmed by nuclear magnetic resonance using a 7A1-single-chain variable fragment.
View Article and Find Full Text PDFBackground: Cockroach allergens are an important cause of IgE-mediated sensitization in inner-city asthmatic patients. However, cockroach extracts used for diagnosis and immunotherapy are not standardized.
Objective: We sought to determine the allergen content of nonstandardized German cockroach extracts and the levels of sensitization to an expanded set of cockroach allergens as determinants of in vitro extract potency for IgE reactivity.
Der p 1 and Der f 1 are major allergens from Dermatophagoides pteronyssinus and D. farinae, respectively. An analysis of antigenic determinants on both allergens was performed by site-directed mutagenesis.
View Article and Find Full Text PDF