Throughout embryonic development, cells respond to a diverse set of signals and forces, making individual or collective decisions that drive the formation of specialized tissues. The development of these structures is tightly regulated in space and time. In recent years, the possibility that neighboring tissues influence one another's morphogenesis has been explored, as some of them develop simultaneously.
View Article and Find Full Text PDFTension and force propagation play a central role in tissue morphogenesis, as they enable sub- and supra-cellular shape changes required for the generation of new structures. Force is often generated by the cytoskeleton, which forms complex meshworks that reach cell-cell or cell-extracellular matrix junctions to induce cellular rearrangements. These mechanical properties can be measured through laser microdissection, which concentrates energy in the tissue of interest, disrupting its cytoskeleton.
View Article and Find Full Text PDFSemin Cell Dev Biol
January 2023
Cells with subcellular lumens form some of the most miniature tubes in the tubular organs of animals. These are often crucial components of the system, executing functions at remote body locations. Unlike tubes formed by intercellular or autocellular junctions, the cells with junctionless subcellular lumens face unique challenges in modifying the cell shape and plasma membrane organization to incorporate a membrane-bound tube within, often associated with dramatic cellular growth and extensions.
View Article and Find Full Text PDFMembrane trafficking plays many roles in morphogenesis, from bulk membrane provision to targeted delivery of proteins and other cargos. In tracheal terminal cells of the Drosophila respiratory system, transport through late endosomes balances membrane delivery between the basal plasma membrane and the apical membrane, which forms a subcellular tube, but it has been unclear how the direction of growth of the subcellular tube with the overall cell growth is coordinated. We show here that endosomes also organize F-actin.
View Article and Find Full Text PDF