Publications by authors named "L D Murty"

Past research showed a strong linear correlation between levels of the mycotoxins lolitrem B (LB, a tremorgen) and ergovaline (EV, an ergot alkaloid and potent vasoconstrictor) in perennial ryegrass (PRG) forage. The purpose of this study was to characterize the excretion of these two compounds in beef cattle consuming PRG straw and to utilize liquid chromatography-tandem mass spectrometry to investigate the metabolism of LB and EV in excreta. Four groups of steers ( n = 6/group) were fed endophyte-infected PRG for 64 days (2256/638, 1554/373, 1012/259, or 247/<100 μg/kg LB/EV).

View Article and Find Full Text PDF

Recent advances in sampling techniques in the pharmaceutical industry sparked significant interest in applying improvements to extraction methods for greater analyte detection and quantitation. In particular, the dried blood spot (DBS) sampling technique has numerous advantages compared to traditional methods such as liquid-liquid extraction, including the use of small sample volumes, less sample processing, and less exposure to toxic solvents (ether, methyl -butyl ether [MTBE], and dichloromethane). In this article, we discuss the adaptation of DBS technology to develop and validate a novel paper strip extraction method for the analysis of natural product metabolites in biological samples obtained from a human pharmacokinetic study of xanthohumol, a hop prenylflavonoid.

View Article and Find Full Text PDF

The ability of ruminal microorganisms to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high melting explosive, HMX) as consortia from whole rumen fluid (WRF), and individually as 23 commercially available ruminal strains, was compared under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for delineation of the metabolic pathway. In WRF, 30 μM HMX was degraded to 5 μM HMX within 24 h.

View Article and Find Full Text PDF

A simple, fast liquid-liquid extraction method was developed for studying hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) biodegradation using small sample volumes. The method was tested in vitro with anaerobic incubations of RDX with whole rumen fluid (WRF) and a commercial Sporanaerobacter acetigenes strain in methanogenic media for RDX. Additionally, validation experiments were conducted in deionized water in order to show applicability toward various aqueous matrices.

View Article and Find Full Text PDF

The ability of ruminal microbes to degrade the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ovine whole rumen fluid (WRF) and as 24 bacterial isolates was examined under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography analysis, followed by liquid chromatography-tandem mass spectrometry identification of metabolites. Organisms in WRF microcosms degraded 180 μM RDX within 4 h.

View Article and Find Full Text PDF