Int J Med Microbiol
August 2018
Heme is a cofactor that is essential for cellular respiration and for the function of many enzymes. If heme levels become too low within the cell, S. aureus switches from producing energy via respiration to producing energy by fermentation.
View Article and Find Full Text PDFHeme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis.
View Article and Find Full Text PDFAdaptations that enable antimicrobial resistance often pose a fitness cost to the microorganism. Resistant pathogens must therefore overcome such fitness decreases to persist within their hosts. Here we demonstrate that the reduced fitness associated with one resistance-conferring mutation can be offset by community interactions with microorganisms harboring alternative mutations or via interactions with the human microbiota.
View Article and Find Full Text PDF