Vaccine-induced immunoglobulin G (IgG) profiles can vary with respect to the predominant subclasses that characterize the response. Among IgG subclasses, IgG4 is reported to have anti-inflammatory properties, but can also exhibit reduced capacity for virus neutralization and activation of Fc-dependent effector functions. Here, we review evidence that IgG4 subclass responses can be disproportionately increased in response to some types of vaccines targeting an array of diseases, including pertussis, HIV, malaria, and COVID-19.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) vaccines reduce severe disease and mortality and may lessen transmission, measured by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load (VL). Evaluating vaccine associations in VL at COVID-19 diagnosis in 4 phase 3 randomized, placebo-controlled vaccine trials, July 2020 to July 2021, VL reductions were 2.78 log10 copies/mL (95% confidence interval [CI], 1.
View Article and Find Full Text PDFImportance: SARS-CoV-2 viral load (VL) in the nasopharynx is difficult to quantify and standardize across settings, but it may inform transmission potential and disease severity.
Objective: To characterize VL at COVID-19 diagnosis among previously uninfected and unvaccinated individuals by evaluating the association of demographic and clinical characteristics, viral variant, and trial with VL, as well as the ability of VL to predict severe disease.
Design, Setting, And Participants: This secondary cross-protocol analysis used individual-level data from placebo recipients from 4 harmonized, phase 3 COVID-19 vaccine efficacy trials sponsored by Moderna, AstraZeneca, Janssen, and Novavax.
Background: Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are highly efficacious at preventing severe disease in the general population, current data are lacking regarding vaccine efficacy (VE) for individuals with mild immunocompromising conditions.
Methods: A post hoc, cross-protocol analysis of participant-level data from the blinded phase of four randomized, placebo-controlled, coronavirus disease 2019 (COVID-19) vaccine phase 3 trials (Moderna, AstraZeneca, Janssen, and Novavax) was performed. We defined a "tempered immune system" (TIS) variable via a consensus panel based on medical history and medications to determine VE against symptomatic and severe COVID-19 cases in TIS participants versus non-TIS individuals starting at 14 days after completion of the primary series through the blinded phase for each of the 4 trials.
Background: Protein-based vaccines for coronavirus disease 2019 (COVID-19) provide a traditional vaccine platform with long-lasting protection for non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogens and may complement messenger RNA vaccines as a booster dose. While NVX-CoV2373 showed substantial early efficacy, the durability of protection has not been delineated.
Methods: The PREVENT-19 vaccine trial used a blinded crossover design; the original placebo arm received NVX-CoV2373 after efficacy was established.