Publications by authors named "L Cuccia"

In the context of the energy transition, European countries pursue the common goal of increasing the share of renewable gases (from anaerobic digestion, pyrogasification, and hydrothermal gasification for instance) in the gas mix. Although produced gases are mainly composed of methane after upgrading, impurities of various natures and quantities may also be present in the produced raw gases and still after upgrading, including volatile organic compounds (VOCs) at trace levels that may have an impact on different stages of the gas chain even at low concentrations. These new renewable and/or low-carbon gases imply the need to develop new analytical tools to deeply characterize them, and thus fully manage their integration into the gas value chain.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the importance of characterizing renewable gases, particularly focusing on trace volatile organic compounds (VOCs) that could affect the gas chain at low concentrations.
  • It emphasizes the critical role of proper sampling methods in analyzing these trace VOCs and investigates various factors, such as stabilization time and external temperatures, that could affect sampling accuracy.
  • The findings reveal that a 45-minute stabilization is necessary for reliable results, external temperature only minimally affects the results, and using an intermediate sampling cylinder can lead to a loss of compounds if not handled properly.
View Article and Find Full Text PDF

Purpose: In a relatively large cohort of thalassemia intermedia (TI) patients, we systematically investigated myocardial iron overload (MIO), function, and replacement fibrosis using cardiac magnetic resonance (CMR), we assessed the clinical determinants of global heart T2* values, and we explored the association between multiparametric CMR findings and cardiac complications.

Materials And Methods: We considered 254 beta-TI patients (43.14 ± 13.

View Article and Find Full Text PDF

This paper documents and reinvestigates the solid-state and crystal structures of 4,4'-azobis-4-cyanopentanoic acid (ACPA), a water-soluble azobis-nitrile of immense utility as a radical initiator in living polymerizations and a labile mechanophore that can be embedded within long polymer chains to undergo selective scission under mechanical activation. Surprisingly, for such applications, both the commercially available reagent and their derivatives are used as "single initiators" when this azonitrile is actually a mixture of stereoisomers. Although the racemate and compounds were identified more than half a century ago and their enantiomers were separated by classical resolution, there have been confusing narratives dealing with their characterization, the existence of a conglomeratic phase, and fractional crystallization.

View Article and Find Full Text PDF

The development of renewable and low-carbon gases for injection into the gas grid obtained by different processes such as anaerobic digestion, pyrogasification, hydrothermal gasification, and methanation, followed by upgrading steps, increases the demand for analysis and characterization in order to fully manage their integration into the gas value chain. If the analysis of the main compounds (methane, carbon dioxide, hydrogen, and carbon monoxide) is well described, the analysis of impurities in renewable gases remains more challenging due to their various natures and quantities. After a brief description of renewable and low-carbon methane production processes, the review focuses on the methods used for the analysis of the different compounds in renewable gases, from the main ones to impurities at ppb levels.

View Article and Find Full Text PDF