Background: The gut microbiome is recognized as a pivotal factor in the pathophysiology of sarcopenia-a condition marked by the accelerated loss of muscle strength, mass and function with ageing. Despite this well-known gut-muscle axis, the potential links between other microbial ecosystems and sarcopenia remain largely unexplored. The oral microbiome has been linked to various age-related health conditions such as rheumatoid arthritis and colorectal cancer.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
April 2024
Muscle wasting diseases, such as cancer cachexia and age-associated sarcopenia, have a profound and detrimental impact on functional independence, quality of life, and survival. Our understanding of the underlying mechanisms is currently limited, which has significantly hindered the development of targeted therapies. In this study, we explored the possibility that the streptococcal quorum sensing peptide Competence Stimulating Peptide 7 (CSP-7) might be a previously unidentified contributor to clinical muscle wasting.
View Article and Find Full Text PDFCell penetrating peptides constitute a potent approach to overcome the limitations of in vivo siRNA delivery. We recently proposed a peptide-based nanoparticle system, CADY, for efficient delivery of siRNA into numerous cell lines. CADY is a secondary amphipathic peptide that forms stable complexes with siRNA thereby improving both their cellular uptake and biological response.
View Article and Find Full Text PDF