Pimozide is a first-generation antipsychotic used in the treatment of schizophrenia, Gilles de la Tourette syndrome, and other chronic psychoses. Its in vivo efficacy is limited by poor solubility and consequent poor bioavailability. Therefore, adipic acid was used as a coformer for the preparation of a binary product with improved pharmaceutical properties.
View Article and Find Full Text PDFSignificance: We explore the feasibility of using time-domain (TD) and continuous-wave (CW) functional near-infrared spectroscopy (fNIRS) to monitor brain hemodynamic oscillations during resting-state activity in humans, a phenomenon that is of increasing interest in the scientific and medical community and appears to be crucial to advancing the understanding of both healthy and pathological brain functioning.
Aim: Our general object is to maximize fNIRS sensitivity to brain resting-state oscillations. More specifically, we aim to define comprehensive guidelines for optimizing main operational parameters in fNIRS measurements [average photon count rate, measurement length, sampling frequency, and source-detector distance (SSD)].
[This corrects the article on p. 5994 in vol. 14, PMID: 38021143.
View Article and Find Full Text PDFBismuth(III) complexes have been reported to act as inhibitors of the enzyme urease, ubiquitously present in soils and implicated in the pathogenesis of several microorganisms. The general insolubility of Bi(III) complexes in water at neutral pH, however, is an obstacle to their utilization. In our quest to improve the solubility of Bi(III) complexes, we selected a compound reported to inhibit urease, namely [Bi(HEDTA)]·2HO, and co-crystallized it with (i) racemic DL-histidine to obtain the conglomerate [Bi(HEDTA)(μ-D-His)]·6HO + [Bi(HEDTA)(μ-L-His)]·6HO, (ii) enantiopure L-histidine to yield [Bi(HEDTA)(μ-L-His)]·6HO, and (iii) cytosine to obtain [Bi(HEDTA)]·Cyt·2HO.
View Article and Find Full Text PDFIn this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations ( frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities.
View Article and Find Full Text PDF