Publications by authors named "L Combaret"

In order to preserve muscle mass during catabolic states, investigators are actively searching for a specific inhibitor of MuRF1, the only known E3 ligase that can target muscle contractile proteins for their degradation. However, what would be the consequences of such inhibitors on other organs, both in the short and long term? Indeed, skeletal muscles can provide amino acids for liver gluconeogenesis, which is a crucial adaptation for maintaining glucose homeostasis upon elevated energy demands (e.g.

View Article and Find Full Text PDF

T cell therapy strategies, from allogeneic stem cell transplantation toward genetically-modified T cells infusion, develop powerful anti-tumor effects but are often accompanied by side effects and their efficacy remains sometimes to be improved. It therefore appears important to provide a flexible and easily reversible gene expression regulation system to control T cells activity. We developed a gene expression regulation technology that exploits the physiological GCN2-ATF4 pathway's ability to induce gene expression in T cells in response to one essential amino acid deficiency.

View Article and Find Full Text PDF

Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved catabolic process and represents a field of research that is constantly growing [...

View Article and Find Full Text PDF

Chronic treatment with acetaminophen (APAP) induces cysteine (Cys) and glutathione (GSH) deficiency which leads to adverse metabolic effects including muscle atrophy. Mammalian cells respond to essential amino acid deprivation through the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). Phosphorylated eIF2α leads to the recruitment of activating transcription factor 4 (ATF4) to specific CCAAT/enhancer-binding protein-ATF response element (CARE) located in the promoters of target genes.

View Article and Find Full Text PDF