Functional near-infrared spectroscopy (fNIRS) is a widely used imaging method for mapping brain activation based on cerebral hemodynamics. The accurate quantification of cortical activation using fNIRS data is highly dependent on the ability to correctly localize the positions of light sources and photodetectors on the scalp surface. Variations in head size and shape across participants greatly impact the precise locations of these optodes and consequently, the regions of the cortical surface being reached.
View Article and Find Full Text PDFSignificance: Dementia presents a global healthcare crisis, and neuroimaging is the main method for developing effective diagnoses and treatments. Yet currently, there is a lack of sensitive, portable, and low-cost neuroimaging tools. As dementia is associated with vascular and metabolic dysfunction, near-infrared spectroscopy (NIRS) has the potential to fill this gap.
View Article and Find Full Text PDFBroadband near-infrared spectroscopy (bNIRS) has the potential to provide non-invasive measures of cerebral haemodynamic changes alongside changes in cellular oxygen utilisation through the measurement of mitochondrial enzyme cytochrome-c-oxidase (oxCCO). It therefore provides the opportunity to explore brain function and specialisation, which remains largely unexplored in infancy. We used bNIRS to measure changes in haemodynamics and changes in oxCCO in 4-to-7-month-old infants over the occipital and right temporal and parietal cortices in response to social and non-social visual and auditory stimuli.
View Article and Find Full Text PDFStudies of cortical function in newborn infants in clinical settings are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become an increasingly common clinical research tool but has significant limitations including a low spatial resolution and poor depth specificity. Moreover, the bulky optical fibres required in traditional fNIRS approaches present significant mechanical challenges, particularly for the study of vulnerable newborn infants.
View Article and Find Full Text PDF