α-synucleinopathies progression involves the spread of α-synuclein aggregates through the extracellular space (ECS). Single-particle tracking studies showed that α-synuclein-induced neurodegeneration increases ECS molecular diffusivity. To disentangle the consequences of neuronal loss versus α-synuclein-positive intracellular assemblies formation, we performed near-infrared single-particle tracking to characterise ECS rheology in the striatum of mouse models of α-synucleinopathies.
View Article and Find Full Text PDFThe ability to determine the precise structure of nano-objects is essential for a multitude of applications. This is particularly true of single-walled carbon nanotubes (SWCNTs), which are produced as heterogeneous samples. Current techniques used for their characterization require sophisticated instrumentation, such as atomic force microscopy (AFM), or compromise on accuracy.
View Article and Find Full Text PDFDuring liver fibrosis, recurrent hepatic injuries lead to the accumulation of collagen and other extracellular matrix components in the interstitial space, ultimately disrupting liver functions. Early stages of liver fibrosis may be reversible, but opportunities for diagnosis at these stages are currently limited. Here, we show that the alterations of the interstitial space associated with fibrosis can be probed by tracking individual fluorescent single-walled carbon nanotubes (SWCNTs) diffusing in that space.
View Article and Find Full Text PDFSingle-molecule localization microscopy has proved promising to unravel the dynamics and molecular architecture of thin biological samples down to nanoscales. For applications in complex, thick biological tissues shifting single-particle emission wavelengths to the shortwave infrared (SWIR also called NIR II) region between 900 to 2100 nm, where biological tissues are more transparent is key. To date, mainly single-walled carbon nanotubes (SWCNTs) enable such applications, but they are inherently 1D objects.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2023
Binary annular masks have recently been proposed to extend the depth of field (DoF) of single-molecule localization microscopy. A strategy for designing optimal masks has been introduced based on maximizing the emitter localization accuracy, expressed in terms of Fisher information, over a targeted DoF range. However, the complete post-processing pipeline to localize a single emitter consists of two successive steps: detection, where the regions containing emitters are determined, and localization, where the sub-pixel position of each detected emitter is estimated.
View Article and Find Full Text PDF