Publications by authors named "L Claverie"

The biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected.

View Article and Find Full Text PDF

Endocytosis is a fundamental process occurring in all eukaryotic cells. Live cell imaging of endocytosis has helped to decipher many of its mechanisms and regulations. With the pulsed-pH (ppH) protocol, one can detect the formation of individual endocytic vesicles (EVs) with an unmatched temporal resolution of 2 s.

View Article and Find Full Text PDF

During clathrin mediated endocytosis (CME), the concerted action of dynamin and its interacting partners drives membrane scission. Essential interactions occur between the proline/arginine-rich domain of dynamin (dynPRD) and the Src-homology domain 3 (SH3) of various proteins including amphiphysins. Here we show that multiple SH3 domains must bind simultaneously to dynPRD through three adjacent motifs for dynamin's efficient recruitment and function.

View Article and Find Full Text PDF

Background: While the locomotor behavior of humans walking alone has been extensively studied, the locomotor behavior of humans transporting a load collectively is very poorly documented in the biomechanics literature. Yet, collective transport could find potential developments in other domains such as rehabilitation and robotics.

Research Question: If collective load transport is made economically one could expect that the center of mass of the ensemble formed by several individuals and the load they carry has the same pendulum-like behavior as a single individual walking alone.

View Article and Find Full Text PDF

Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers.

View Article and Find Full Text PDF