This study utilizes flow cytometry (FCM) to evaluate the high nucleic acid (HNA) and low nucleic acid (LNA) content of intact cells for monitoring bacterial dynamics in drinking water treatment and supply systems. Our findings indicate that chlorine and nutrients differently impact components of bacterial populations. HNA bacteria, characterized by high metabolic rates, quickly react to nutrient alterations, making them suitable indicators of growth under varying water treatment and supply conditions.
View Article and Find Full Text PDFFlow cytometry has been utilized for over a decade as a rapid and reproducible approach to assessing microbial quality of drinking water. However, the need for specialized expertise in gating-a fundamental strategy for distinguishing cell populations-introduces the potential for human error and obstructs the standardization of methods. This work conducts a comprehensive analysis of various gating approaches applied to flow cytometric scatter plots, using a dataset spanning a year.
View Article and Find Full Text PDFA six-month laboratory scale study was carried out to investigate the effect of biochar and compost amendments on complex chemical mixtures of tar, heavy metals and metalloids in two genuine contaminated soils. An integrated approach, where organic and inorganic contaminants bioavailability and distribution changes, along with a range of microbiological indicators and ecotoxicological bioassays, was used to provide multiple lines of evidence to support the risk characterisation and assess the remediation end-point. Both compost and biochar amendment (p = 0.
View Article and Find Full Text PDF