Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.
Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.
Owing to their exceptional mechanical, electronic, and phononic transport properties, compositionally complex alloys, including high-entropy alloys, represent an important class of materials. However, the interplay between chemical disorder and electronic correlations, and its influence on electronic structure-derived properties, remains largely unexplored. This is addressed for the archetypal CrMnFeCoNi alloy using resonant and valence band photoemission spectroscopy, electrical resistivity, and optical conductivity measurements, complemented by linear response calculations based on density functional theory.
View Article and Find Full Text PDFHealthcare-associated pathogens, including Staphylococcus capitis, can contaminate incubator surfaces and are of significant concern in neonatal intensive care units (NICUs). Effective incubator decontamination is essential for infection prevention and control, with submersion decontamination often recommended. This may not always be achievable, with wipe decontamination seen as an alternative.
View Article and Find Full Text PDFBackground: Hospital water is involved in both the prevention and spread of healthcare-associated infections (HCAIs). Handwashing is key to reducing the transmission of pathogens, yet numerous outbreaks have been found to be caused by organisms within sinks, taps and showers. Pseudomonas aeruginosa and increasingly non-aeruginosa Pseudomonas cause waterborne HCAI, however, little is known about the virulence potential of Pseudomonas species found within hospital environments.
View Article and Find Full Text PDFBackground: Despite their role being historically overlooked, environmental surfaces have been shown to play a key role in the transmission of pathogens causative of healthcare-associated infection. To guide infection prevention and control (IPC) interventions and inform clinical risk assessments, more needs to be known about microbial surface bioburdens.
Aim: To identify the trends in culturable bacterial contamination across communal touch sites over time in a hospital setting.