This work studied the adsorption at dodecane/water interface of amphiphilic polysaccharides derived from dextran (a nonionic bacterial polysaccharide) by random attachment of phenoxy groups along the chains (between 10 and 20 attached phenoxy groups per 100 glucose repeat units). The long-time kinetics of interfacial tension decrease was satisfactorily described assuming diffusion-limited adsorption of hydrophobic units (over 4h). Dilational rheology of dodecane/water interface was studied for the first time with that kind of amphiphilic polysaccharides and evidenced a significant elastic component.
View Article and Find Full Text PDFThis study reports the first PEO-coated polymer nanoparticles synthesis by miniemulsion polymerization of nano-emulsions prepared by the low-energy emulsification method called EIP. The surfactant used was Brij 98, a PEO based non ionic commercial surfactant. The partial phase diagram of the system water/Brij 98/styrene was first determined.
View Article and Find Full Text PDFThe analysis of incoherent polarized steady light transport is reported as a convenient technique for the drop size determination in highly concentrated oil-in-water emulsions. The studied system consists in heptane-in-water emulsions stabilized with a copolymeric surfactant (Synperonic PE®/L64). Hundred grams of parent emulsions, at two volume fractions of dispersed phase (φ=0.
View Article and Find Full Text PDFSurface tension properties of an enzymatically synthesized equimolar mixture of trehalose mono- and didecanoate in aqueous solutions have been determined. At 20 degrees C a critical micellar concentration (CMC) of 50 micromol/l and a minimal surface tension of 28 mN/m have been obtained. Above the CMC, it has been shown that up to a concentration of 42 wt%, and in a 20-60 degrees C temperature range the sugar ester aqueous solutions do not form any crystalline structure, nor present any phase transition, and the trehalose decanoate molecules form an isotropic worm-like micellar phase.
View Article and Find Full Text PDFTwo kinds of transitions can occur when an emulsified water-oil-ethoxylated nonionic surfactant system is cooled under constant stirring. At a water-oil ratio close to unity, a transitional inversion takes place from a water-in-oil (W/O) to an oil-in-water (O/W) morphology according to the so-called phase-inversion-temperature method. At a high water content, a multiple w/O/W emulsion changes to a simple O/W emulsion.
View Article and Find Full Text PDF