The selection of biomarker panels in omics data, challenged by numerous molecular features and limited samples, often requires the use of machine learning methods paired with wrapper feature selection techniques, like genetic algorithms. They test various feature sets-potential biomarker solutions-to fine-tune a machine learning model's performance for supervised tasks, such as classifying cancer subtypes. This optimization process is undertaken using validation sets to evaluate and identify the most effective feature combinations.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2024
Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets.
View Article and Find Full Text PDFJ Biomed Inform
November 2024
The proliferation of omics data has advanced cancer biomarker discovery but often falls short in external validation, mainly due to a narrow focus on prediction accuracy that neglects clinical utility and validation feasibility. We introduce three- and four-objective optimization strategies based on genetic algorithms to identify clinically actionable biomarkers in omics studies, addressing classification tasks aimed at distinguishing hard-to-differentiate cancer subtypes beyond histological analysis alone. Our hypothesis is that by optimizing more than one characteristic of cancer biomarkers, we may identify biomarkers that will enhance their success in external validation.
View Article and Find Full Text PDFBackground: Postmastectomy radiotherapy (PMRT) on immediate breast reconstruction historically involved a marked increase in complication rate (up to 50%). Prepectoral breast reconstruction (PPBR) has shown promising early postoperative results. This study aims to evaluate PPBR long-term results in PMRT setting.
View Article and Find Full Text PDFBioinform Adv
October 2022
Motivation: Gene expression-based classifiers are often developed using historical data by training a model on a small set of patients and a large set of features. Models trained in such a way can be afterwards applied for predicting the output for new unseen patient data. However, very often the accuracy of these models starts to decrease as soon as new data is fed into the trained model.
View Article and Find Full Text PDF