Bacterial exopolymeric substances (EPS) are molecules released in response to the physiological stress encountered in the natural environment. EPS are structural components of the extracellular matrix in which cells are embedded during biofilm development. The chemical nature and functions of these EPS are dependent on the genetic expression of the cells within each biofilm.
View Article and Find Full Text PDFAlthough the implications of calcium carbonate (CaCO(3)) precipitation by microorganisms in natural environments are quite relevant, the physiology and genetics of this phenomenon are poorly understood. We have chosen Bacillus subtilis 168 as our model to study which physiological aspects are associated with CaCO(3) (calcite) formation during biofilm development when grown on precipitation medium. A B.
View Article and Find Full Text PDFMicrobial mats are one of the best suited laminar organo-sedimentary ecosystems for students from different educational backgrounds to visualize the direct relationship between microbes and minerals. We have used tropical hypersaline microbial mats from Puerto Rico as educational tools to promote active learning of geomicrobiology introductory concepts for undergraduate students organized in multidisciplinary teams with biological and geological backgrounds. Besides field trips and independent research projects focused on microbial mats, four intensive workshops and one capstone activity were designed to expose students to the different geomicrobiology subdisciplines (microbiology, molecular biology, geology, and geochemistry).
View Article and Find Full Text PDFThe Cabo Rojo Solar Salterns located on the southwest coast of Puerto Rico are composed of two main ecosystems (i.e., salt ponds and microbial mats).
View Article and Find Full Text PDFFEMS Microbiol Lett
July 2000
Bacillus subtilis cells lacking the PerR repressor which regulates transcription of genes encoding oxidative stress protective proteins grew at 30-50% the rate of wild-type cells, and perR cultures accumulated rapidly growing suppressor mutants lacking the catalase whose expression is regulated by PerR. However, perR spores which retained the perR regulated catalase were obtained on plates. These perR spores had levels of oxidative stress protective proteins from 7- to 50-fold higher than those in wild-type spores, but perR spore resistance to heat, hydrogen peroxide and t-butyl hydroperoxide was essentially identical to that of wild-type spores, indicating that elevated levels of proteins that protect growing cells from oxidizing agents play no role in dormant spore resistance to these compounds.
View Article and Find Full Text PDF