Publications by authors named "L Canesi"

In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected.

View Article and Find Full Text PDF

Microplastic (MP) contamination in the aquatic environment is a cause of concern worldwide since MP can be taken up by different organisms, altering different biological functions. In particular, evidence is accumulating that MP can affect the relationship between the host and its associated microbial communities (the microbiome), with potentially negative health consequences. Synthetic microfibers (MFs) represent one of the main MPs in the marine environment, which can be accumulated by filter-feeding invertebrates, such as bivalves, with consequent negative effects and transfer through the food chain.

View Article and Find Full Text PDF

Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) represent a global threat to human health and the environment. In vertebrates, lipophilic EDCs primarily act by mimicking endogenous hormones, thus interfering with the transcriptional activity of nuclear receptors (NRs). The demonstration of the direct translation of these mechanisms into perturbation of NR-mediated physiological functions in invertebrates, however, has rarely proven successful, as the modes of action of EDCs in vertebrates and invertebrates seem to be distinct.

View Article and Find Full Text PDF

A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased.

View Article and Find Full Text PDF