Publications by authors named "L Camarena"

Cereibacter sphaeroides has a quorum sensing (QS) system that has been partially characterized. Using a bioinformatic approach, six LuxR homologs and one homolog of the acylhomoserine lactone synthase were identified in this bacterium, including the previously characterized CerR and CerI proteins. This study focused on determining the roles of two LuxR homologs, CerM and CerN.

View Article and Find Full Text PDF

The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body.

View Article and Find Full Text PDF

Bacteria frequently store excess carbon in hydrophobic granules of polyhydroxybutyrate (PHB) that in some growth conditions can occupy most of the cytoplasmic space. Different types of proteins associate to the surface of the granules, mainly enzymes involved in the synthesis and utilization of the reserve polymer and a diverse group of proteins known as phasins. Phasins have different functions, among which are regulating the size and number of the granules, modulating the activity of the granule-associated enzymes and helping in the distribution of the granules inside the cell.

View Article and Find Full Text PDF

In alphaproteobacteria, the two-component system (TCS) formed by the hybrid histidine kinase CckA, the phosphotransfer protein ChpT, and the response regulator CtrA is widely distributed. In these microorganisms, this system controls diverse functions such as motility, DNA repair, and cell division. In and , CckA is regulated by the pseudo- histidine kinase DivL, and the response regulator DivK.

View Article and Find Full Text PDF

The study of peptidoglycan-binding proteins frequently requires in vitro binding assays, in which the isolated peptidoglycan used as a substrate must be carefully quantified. Here, we describe an easy and sensitive assay for peptidoglycan quantification based on a modified Nelson-Somogyi reducing sugar assay. We report the response of this assay to different common sugars and adapt its use to peptidoglycan samples subjected to acid hydrolysis.

View Article and Find Full Text PDF