Publications by authors named "L C Samuelson"

Intestinal stem cells replenish the epithelium throughout life by continuously generating intestinal epithelial cell types, including absorptive enterocytes, and secretory goblet, endocrine, and Paneth cells. This process is orchestrated by a symphony of niche factors required to maintain intestinal stem cells and to direct their proliferation and differentiation. Among the various mature intestinal epithelial cell types, Paneth cells are unique in their location in the stem cell zone, directly adjacent to intestinal stem cells.

View Article and Find Full Text PDF

Biliary obstruction and cholangiocyte hyperproliferation are important features of cholangiopathies affecting the large extrahepatic bile duct (EHBD). The mechanisms underlying obstruction-induced cholangiocyte proliferation in the EHBD remain poorly understood. Developmental pathways, including WNT signaling, are implicated in regulating injury responses in many tissues, including the liver.

View Article and Find Full Text PDF

Direct thermal-to-electric energy converters typically operate in the linear regime, where the ratio of actual maximum power relative to the ideal maximum power, the so-called fill factor (FF), is 0.25. Here, we show, based on fundamental symmetry considerations, that the leading order nonlinear terms that can increase the FF require devices with broken spatial symmetry.

View Article and Find Full Text PDF

We demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers.

View Article and Find Full Text PDF

The metal ion transporter SLC39A8 is associated with physiological traits and diseases, including blood manganese (Mn) levels and inflammatory bowel diseases (IBD). The mechanisms by which SLC39A8 controls Mn homeostasis and epithelial integrity remain elusive. Here, we generate Slc39a8 intestinal epithelial cell-specific-knockout (Slc39a8-IEC KO) mice, which display markedly decreased Mn levels in blood and most organs.

View Article and Find Full Text PDF