Publications by authors named "L C Pichon"

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Background: Rapid antiretroviral therapy (ART) initiation, in which individuals with HIV start treatment within days of diagnosis, is a key component of the United States (US) Ending the HIV Epidemic initiative. The Memphis Metropolitan Statistical Area ranks second in the US for HIV incidence, yet only ∼60% of individuals link to treatment within 1 month of diagnosis. This study aimed to identify barriers and strategies for implementing rapid ART initiation in Memphis.

View Article and Find Full Text PDF

We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant () and extremely low dielectric loss (tan ). By varying the substrate deposition temperature () over a wide range (300-800 °C), we identified = 550 °C as the optimal temperature for growing BTO films with an as high as ~3060 and a tan as low as 0.04 (at 20 kHz).

View Article and Find Full Text PDF

A comprehensive understanding of chemical composition of cultural heritage materials usually requires several complementary analytical techniques. Given the fragility and value of artworks, minimizing or avoiding sampling and performing in situ analysis under ambient light is an important goal. This article outlines a novel prototype designed to merge LIBS, laser-induced fluorescence spectroscopy (LIF), Raman spectroscopy using a single pulsed laser, and reflectance spectroscopy in a multi-spectroscopic characterization system for cultural heritage analysis (SYSPECTRAL).

View Article and Find Full Text PDF
Article Synopsis
  • Pure Magnéli-phase TiO coatings were created using a Plasma Torch method and tested for their effectiveness in degrading harmful pollutants like PFOA and PFOS in water, achieving degradation efficiencies of up to 99.7% under optimized conditions.
  • Analysis methods (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) confirmed the unique structure and high surface area of the coatings, contributing to their effectiveness compared to traditional anodes.
  • Using the optimal electro-catalytic oxidation process, the researchers also treated real wastewater with multiple PFAS compounds, achieving substantial degradation rates for some pollutants, demonstrating the potential for this method in environmental cleanup.
View Article and Find Full Text PDF