The high-pressure and high-temperature phase diagram of chromium has been investigated both experimentally (in situ), using a laser-heated diamond-anvil cell technique coupled with synchrotron powder X-ray diffraction, and theoretically, using ab initio density-functional theory simulations. In the pressure-temperature range covered experimentally (up to 90 GPa and 4500 K, respectively) only the solid body-centred-cubic and liquid phases of chromium have been observed. Experiments and computer calculations give melting curves in agreement with each other that can both be described by the Simon-Glatzel equation [Formula: see text].
View Article and Find Full Text PDFSilver has been considered as one of the simple one-phase materials that do not exhibit high pressure or high temperature polymorphism. The solid phase of Ag at ambient conditions is face-centered cubic (fcc) one. However, very recently another solid phase of silver, body-centered cubic (bcc) one, was detected in shock-wave (SW) experiments, and a more sophisticated phase diagram of Ag with the two solid phases was published by Smirnov.
View Article and Find Full Text PDFMachine learning, trained on quantum mechanics (QM) calculations, is a powerful tool for modeling potential energy surfaces. A critical factor is the quality and diversity of the training dataset. Here we present a highly automated approach to dataset construction and demonstrate the method by building a potential for elemental aluminum (ANI-Al).
View Article and Find Full Text PDFIn this work, the melting line of platinum has been characterized both experimentally, using synchrotron X-ray diffraction in laser-heated diamond-anvil cells, and theoretically, using ab initio simulations. In the investigated pressure and temperature range (pressure between 10 GPa and 110 GPa and temperature between 300 K and 4800 K), only the face-centered cubic phase of platinum has been observed. The melting points obtained with the two techniques are in good agreement.
View Article and Find Full Text PDFThe phase diagram of zinc (Zn) has been explored up to 140 GPa and 6000 K, by combining optical observations, x-ray diffraction, and ab initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed (hcp) crystal symmetry up to the melting temperature. The known decrease of the axial ratio (c/a) of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300 K up to the melting temperature.
View Article and Find Full Text PDF